Course Title: Computer Architecture and Organization Program: BICTECourse No. : ICT. Ed. 436Nature of course: Theoretical + PracticalLevel: Bachelor.Credit Hour: 3 hours (2T+1P)Semester: ThirdTeaching Hour: 64 hours (32+32)

1. Course Description

This course is an introduction to Computer Architecture and its Organization. It covers topics in physical design of the computer (i.e. computer organization). This course discusses the basic structure of a digital computer and deals with the detail study of data representation in computer system, Register transfer language and microoperations, and organization of the Control unit, the Arithmetic and Logic unit, the Memory unit and the I/O unit.

2. General Objectives

The general objectives of this course are as follows:

- To provide the students with the knowledge of data representation, register transfer language and microoperations
- To provide the organization and designing concept of computer system including processor, computer arithmetic, memory organization and I/O organization.
- To discuss in detail, the operation of the arithmetic unit including the algorithm to add, subtract and multiply signed magnitude data and signed 2's complement data.
- To study the multiprocessors and pipelining.
- To study the different ways of communicating with I/O devices and standard I/O interfaces

3.	Course Outlines:	

	Specific Objectives	Contents	LH
•	Explain different data types representation Define the requirement of complement numbers	 Unit 1: Data Representation 1.1 Data Types 1.2 Complements 1.3 Fixed Point Representation 1.4 Floating Point Representation Practical Works 1.1 Computer Program: Write program to visualize the representation of complement numbers, integers, floating point numbers and character data, overflow detection while adding integers. 	4
•	 Explain register transfer language Apply different microoperations to perform specific task 	 Unit 2: Register Transfer and Microoperations 2.1 Register and Register Transfer Language 2.2 Bus and Memory Transfers 2.3 Arithmetic, Logic and Shift Micro-operations 2.4 Arithmetic Logic Shift Unit 	8

٠	Explain instruction codes	Unit 3: Basic Computer Organization and	8
•	Describe instruction format and	Design	
	instruction cycle	0	
•	Design component organization	3.1 Instruction Codes	
	in basic computer.	3.2 Computer Registers	
		3.3 Computer Instructions	
		3.4 Timing and Control	
		3.5 Instruction Cycle	
		3.6 Input Output and Interrupt	
		Practical Works	
		3.1 Circuit Design: Design of Basic Computer	
		3.2 Computer Program: Write program to illustrate	
		fetch, decode and execute instructions.	
•	Describe control memory and its	Unit 4: Microprogrammed Control	6
	usage	4.1 Control Memory	
•	Apply address sequencing	4.2 Address Sequencing	
Č	concept	4.3 Computer Configuration Dictblogs blogspot	com
•	Identify microinstruction format	4.4 Microinstruction Format	
	Explain different CDU	Unit 5: Control Processing Unit	6
•	organizations	5.1 CPU Organizations	U
•	Describe the requirement of	5.2 Instruction Formats	
	different instruction formats	5.3 Addressing Modes	
•	Understand and apply		
	addressing modes	Practical Works	
	<u> </u>	5.1 Computer Program: Write program to illustrate the	
		use of different addressing modes.	0
•	Define different types of	Unit 6: Pipelining	8
	computers	6.1 Parallel Processing, Flynn's Classification of	
•	Explain pipelining	6.2 Pipelining	
•	pipelining to improve	6.3 Arithmetic Pipeline	
	performance	6.4 Instruction Pipeline	
•	Understand pipeline hazards and	6.5 Pipeline Hazards and their Solutions	
	suggest their solutions	6.6 Array and Vector Processing	
		Practical Works	
		6.1 Case Study : Available array and vector processors and their application domain	
		6.2 Computer Program : write program which simulates	
		instruction pipeline and arithmetic pipeline.	
٠	Demonstrate the addition and	Unit 7: Computer Arithmetic	8
	subtraction of signed magnitude	7.1 Addition and Subtraction of Signed Magnitude Data	

 data and sig data Trace Multi to multiply and signed 2 	ned 2's complement plication algorithms signed magnitude 2's complement data.	 7.2 Addition and Subtraction of Signed 2's Complement Data 7.3 Multiplication of Signed Magnitude Data 7.4 Multiplication of Signed 2's Complement Data 	
		7.1 Computer Program: Implement all algorithms	
		learned in this chapter in high level language.	
• Explain I/O	interface, async.	Unit 8: Input and Output Organization	6
data transfer	, modes of transfer	8.1 I/O Interface	
Demonstrate	e interrupt handling	8.2 Asynchronous Data Transfer	
and DMA tr	ansfer	8.3 Modes of Transfer	
• Identify the	need of IOP	8.4 Priority Interrupt	
		8.5 Direct Memory Access	
		8.6 I/O Processor	
		 <u>Practical Works</u> 8.1 Case Study: USB (universal serial bus) 	
• Describe the	e concept of memory	Unit 9: Memory Organization	5
hierarchy		9.1 Memory Hierarchy	
• Explain asso	ciative memory	9.2 Main Memory www.bictblogs.blogspot.	com
organization	and cache mapping	9.3 Associative Memory	
techniques		9.4 Cache Memory	
		Practical Works	
		9.1 Computer Program: write program to simulate	
		associative memory (key value pair mapping)	
		implementation	
• Specify the	use of	Unit 10: Multiprocessors	5
multiprocess	sor		C
Demonstrate	e interconnection	10.1 Characteristics of Multiprocessor	
structures of	processors and IPC	10.2 Interconnection Structures	
Identify cacl	he coherence	10.3 Inter Processor Communication and	
problem wit	h its solution	Synchronization	
		10.4 Cache Coherence	
		Practical Works	
		10.1 Computer Program : write program to simulate	
		cache coherence problem and its solution.	

6 Instructional Techniques

The instructional techniques for this course are divided into two groups. First group consists of general instructional techniques applicable to most of the units. The second group consists of specific instructional techniques applicable to particular units.

4.1 General Techniques

Reading materials will be provided to students in each unit. Lecture, Discussion, use of multi-media projector, brain storming are used in all units.

4.2 Specific Instructional Techniques

Demonstration is an essential instructional technique for all units in this course during teaching learning process. Specifically, demonstration with practical works will be specific instructional technique in this course. The details of suggested instructional techniques are presented below:

Unit 2 and 4: Lecture, Discussion

Unit 1, 3, 5, 6, 7, 8, 9 and 10 : Lecture, Discussion, Practical

7 Evaluation

Evaluation of students' performance is divided into parts: Internal assessment (theory and practical and internal external examinations (theory and practical). The distribution of points is given below:

Internal	Internal	Semester	External	Total Points
Assessment	Assessment	Examination	Practical	
Theory	Practical	(Theoretical	Exam/Viva	
		exam)		
25 Points	15 Points	40 Points	20 Points	100 Points
		-		

Note: Students must pass separately in internal assessment, external practical exam and semester examination.

7.1 Internal Assessment (25 Points) of Theoretical Part

Internal assessment will be conducted by subject teacher based on following criteria:

Attendance and learning Activities	5 points
First assignment (Written assignment)	5 points
Second assignment (Project work with pr	esentation) 10 points
Third assignment/written examination	5 point
Total	25 points

7.2 Internal Assessment (15 Points) of practical part

Internal practical assessment will be conducted by subject teacher based on following criteria: Attendance and learning Activities 5 points Practical work/project work/lab work 10 points

Tactical work/project work/lab work	10 points
Total	15 points

7.3 Semester Final Examination (40 Points) theoretical part

Objective question (Multiple choice questions 10 x 1 point)	10 Points
Subjective questions (6 questions x 5 marks with	
'OR" two questions)	30 Points

Total	40	
points		

7.4 Practical Exam/Viva (20 Points)

Examination Division, Office of the Dean will appoint an external examiner (ICT teachers working another campus) for conducting practical examination

Items	Points
Evaluation of Record Book	4
Project work/practical work presentation/skill test	10
Viva	6
То	tal 20

8 Recommended books and References materials (including relevant published articles in national and international journals)

Recommended books:

- 1. Mano, M. M. (2003), Computer System Architecture, (3rd Ed.), Prentice Hall of India.
- 2. Stalling, W. (2016), Computer Organization and Architecture: designing for performance (10th Ed.),

Pearson Education.

3. Tanenbaum, A.S. (2013), Structured Computer Organization, (6th Ed.), Pearson Education.